

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to Contribute

We’d love to accept your patches and contributions to this project. There are
just a few small guidelines you need to follow.

Contributor License Agreement

Contributions to this project must be accompanied by a Contributor License
Agreement. You (or your employer) retain the copyright to your contribution;
this simply gives us permission to use and redistribute your contributions as
part of the project. Head over to https://cla.developers.google.com/ to see
your current agreements on file or to sign a new one.

You generally only need to submit a CLA once, so if you’ve already submitted one
(even if it was for a different project), you probably don’t need to do it
again.

Code reviews

All submissions, including submissions by project members, require review. We
use GitHub pull requests for this purpose. Consult
GitHub Help [https://help.github.com/articles/about-pull-requests/] for more
information on using pull requests.

Community Guidelines

This project follows
Google’s Open Source Community Guidelines [https://opensource.google/conduct/].

Verible

The Verible project’s main mission is to parse SystemVerilog (IEEE 1800-2017)
for a wide variety of applications.

It was born out of a need to parse un-preprocessed source files, which is
suitable for single-file applications like style-linting and formatting. In
doing so, it can be adapted to parse preprocessed source files, which is what
real compilers and toolchains require.

The spirit of the project is that no-one should ever have to develop a
SystemVerilog parser for their own application, because developing a
standard-compliant parser is an enormous task due to the syntactic complexity of
the language.

A lesser (but notable) objective is that the language-agnostic components of
Verible be usable for rapidly developing language support tools for other
languages.

Build

Verible’s code base is written in C++.

To build, you need the bazel [https://bazel.build/] build system.

Build all tools and libraries
bazel build --cxxopt='-std=c++17' //...

Run all tests
bazel test --cxxopt='-std=c++17' //...

You can access the generated artifacts under bazel-bin/. For instance the
syntax checker will be at bazel-bin/verilog/tools/syntax/verilog_syntax
(corresponding to the target name //verilog/tools/syntax:verilog_syntax).

SystemVerilog Support

Parser

The lexer is implemented using GNU Flex, and the parser is implemented using GNU
Bison (yacc). To parse un-preprocessed input, preprocessing constructs had to be
handled explicitly in the parser, and are permitted in limited places. The
grammatic rules in the yacc input are approximate and permissive; it may accept
some syntactically invalid constructs. The priority is to accept all
syntactically valid SystemVerilog, as defined in the SV-LRM [https://ieeexplore.ieee.org/document/8299595]. Status: As of
2019, it accepts the vast majority of SystemVerilog (IEEE 1800-2017), but there
is work ahead to reach 100%.

The lexer and parser are decoupled, which means that the lexer can be used
standalone to tokenize text, and the parser is adapted to accept tokens from
sources other than the direct use of the lexer. This separation enables the
insertion of different passes between the lexer and parser, such as integrated
preprocessing, and context-based lexical disambiguation (with arbitrary
lookahead) where required by the language.

The parser can be tested as a standalone program,
//verilog/tools/syntax:verilog_syntax.

Install in the preferred way on your operating systm. On Unix-like systems, this
would be sudo install bazel-bin/verilog/tools/syntax/verilog_syntax /usr/local/bin

verilog_syntax: usage: /usr/local/bin/verilog_syntax [options] <file> [<file>...]

 Flags from verilog/tools/syntax/verilog_syntax.cc:
 -printrawtokens (Prints all lexed tokens, including filtered ones.);
 default: false;
 -printtokens (Prints all lexed and filtered tokens); default: false;
 -printtree (Whether or not to print the tree); default: false;
 -verifytree (Verifies that all tokens are parsed into tree, prints unmatched
 tokens); default: false;

Try --helpfull to get a list of all flags.

Token Stream

The lexer partitions a text buffer into a sequence of tokens with annotations
(token stream). verilog_syntax --printtokens shows the tokens that feeds into
the parser, and --printrawtokens to shows all tokens including whitespaces,
comments, and attributes.

For example, the following code:

// This is module foo.
module foo(input a, b, output z);
endmodule : foo

produces the following tokens (shown using --printrawtokens):

All lexed tokens:
All lexed tokens:
(#"// end of line comment" @0-22: "// This is module foo.")
(#"<<\\n>>" @22-23: "
")
(#"module" @23-29: "module")
(#"<<space>>" @29-30: " ")
(#SymbolIdentifier @30-33: "foo")
(#'(' @33-34: "(")
(#"input" @34-39: "input")
(#"<<space>>" @39-40: " ")
(#SymbolIdentifier @40-41: "a")
(#',' @41-42: ",")
(#"<<space>>" @42-43: " ")
(#SymbolIdentifier @43-44: "b")
(#',' @44-45: ",")
(#"<<space>>" @45-46: " ")
(#"output" @46-52: "output")
(#"<<space>>" @52-53: " ")
(#SymbolIdentifier @53-54: "z")
(#')' @54-55: ")")
(#';' @55-56: ";")
(#"<<\\n>>" @56-57: "
")
(#"endmodule" @57-66: "endmodule")
(#"<<space>>" @66-67: " ")
(#':' @67-68: ":")
(#"<<space>>" @68-69: " ")
(#SymbolIdentifier @69-72: "foo")
(#"<<\\n>>" @72-73: "
")
(#"<<\\n>>" @73-74: "
")
(#$end @74-74: "")

The token names (after #) correspond to description strings in the yacc
grammar file; keywords are shown the same as the text they match. Byte offsets
are shown as the range that follows ‘@’. The raw, unfiltered token stream is
lossless with respect to the original input text.

Concrete Syntax Tree

The parser produces a concrete syntax tree (CST), which can be diagnosed with
verilog_syntax --printtree.

For example, the following code (same as above):

// This is module foo.
module foo(input a, b, output z);
endmodule : foo

produces this CST (rendered by verilog_syntax --printtree):

Parse Tree:
Node (tag: kDescriptionList) {
 Node (tag: kModuleDeclaration) {
 Node (tag: kModuleHeader) {
 (#"module" @23-29: "module")
 (#SymbolIdentifier @30-33: "foo")
 Node (tag: kParenGroup) {
 (#'(' @33-34: "(")
 Node (tag: kPortDeclarationList) {
 Node (tag: kPortDeclaration) {
 (#"input" @34-39: "input")
 Node (tag: kDataType) {
 }
 Node (tag: kUnqualifiedId) {
 (#SymbolIdentifier @40-41: "a")
 }
 Node (tag: kUnpackedDimensions) {
 }
 }
 (#',' @41-42: ",")
 Node (tag: kPort) {
 Node (tag: kPortReference) {
 Node (tag: kUnqualifiedId) {
 (#SymbolIdentifier @43-44: "b")
 }
 }
 }
 (#',' @44-45: ",")
 Node (tag: kPortDeclaration) {
 (#"output" @46-52: "output")
 Node (tag: kDataType) {
 }
 Node (tag: kUnqualifiedId) {
 (#SymbolIdentifier @53-54: "z")
 }
 Node (tag: kUnpackedDimensions) {
 }
 }
 }
 (#')' @54-55: ")")
 }
 (#';' @55-56: ";")
 }
 (#"endmodule" @57-66: "endmodule")
 Node (tag: kLabel) {
 (#':' @67-68: ":")
 (#SymbolIdentifier @69-72: "foo")
 }
 }
}

Nodes of the CST may link to other nodes or leaves (which contain tokens). The
nodes are tagged with language-specific enumerations. Each leaf encapsulates a
token and is shown with its corresponding byte-offsets in the original text (as
@left-right). Null nodes are not shown.

The exact structure of the SystemVerilog CST is fragile, and should not be
considered stable; at any time, node enumerations can be created or removed, and
subtree structures can be re-shaped. In the above example, kModuleHeader is an
implementation detail of a module definition’s composition, and doesn’t map
directly to a named grammar construct in the SV-LRM [https://ieeexplore.ieee.org/document/8299595]. The verilog/CST library
provides functions that abstract away internal structure.

Abstract Syntax Tree

An abstract syntax tree (AST) does not exist yet, but is planned.

Style Linter

The style linter is an analysis tool that identifies constructs or patterns
deemed undesirable according to a style guide. The main goal is to relieve
humans the burden of reviewing code for style compliance. Many lint rules use
syntax tree pattern matching to find style violations.

The linter tool is available as //verilog/tools/lint:verilog_lint.

Install in the preferred way on your operating systm. On Unix-like systems, this
would be sudo install bazel-bin/verilog/tools/lint/verilog_lint /usr/local/bin

verilog_lint: usage: /usr/local/bin/verilog_lint [options] <file> [<file>...]

 Flags from verilog/tools/lint/verilog_lint.cc:
 -generate_markdown (If true, print the description of every rule formatted
 for the markdown and exit immediately. Intended for the output to be
 written to a snippet of markdown.); default: false;
 -help_rules ([all|<rule-name>], print the description of one rule/all rules
 and exit immediately.); default: "";
 -lint_fatal (If true, exit nonzero if linter finds violations.);
 default: false;
 -parse_fatal (If true, exit nonzero if there are any syntax errors.);
 default: false;

Try --helpfull to get a list of all flags.

Formatter

The formatter is a transformative tool that manages whitespace in accordance
with a particular style. The main goal is to relieve humans of having to
manually manage whitespace, wrapping, and indentation, and to provide a tool
that can be integrated into any editor to enable editor-independent consistency.

The formatter tool is available as //verilog/tools/formatter:verilog_format.

Install in the preferred way on your operating systm. On Unix-like systems, this
would be sudo install bazel-bin/verilog/tools/formatter/verilog_format /usr/local/bin

verilog_format: usage: verilog_format [options] <file>

 Flags from verilog/tools/formatter/verilog_format.cc:
 -inplace (If true, overwrite the input file on successful conditions.);
 default: false;
 -max_search_states (Limits the number of search states explored during line
 wrap optimization.); default: 100000;
 -preserve_hspaces (Mode that controls how original inter-token (horizontal)
 spacing is used.
 none: disregard all original spacing
 all: only use original spacing (does no formatting)
 unhandled: fall-back to original spacing in unhandled cases.);
 default: unhandled;
 -preserve_vspaces (Mode that controls how original inter-line (vertical)
 spacing is used.
 This only takes any effect when preserve_hspaces != all.
 none: disregard all original spacing
 all: keep original vertical spacing (newlines only, no spaces/tabs)
 unhandled: same as 'all' (for now).); default: unhandled;
 -show_largest_token_partitions (If > 0, print token partitioning and then
 exit without formatting output.); default: 0;
 -show_token_partition_tree (If true, print diagnostics after token
 partitioning and then exit without formatting output.); default: false;

Try --helpfull to get a list of all flags.

Future Intent

The Verible team is interested in exploring how it can help other tool
developers in providing a SystemVerilog front end, for example, emitting an
abstract syntax tree (AST). If you are interested in collaborating, contact us.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

